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ABSTRACT
YoctoDB is a small embedded engine for extremely fast
partitioned immutable-after-construction databases. Sev-
eral high load services at Yandex.Classifieds implement pipelined
partitioned data reindexing. The result of the reindexing
process is an immutable index delivered to many search
machines, reopened as a part of the composite index and
queried when serving user requests. Read performance, mem-
ory consumption, fast reopening and reproducible latencies
are paramount for the database engine. YoctoDB has suc-
cessfully provided a solution for all of these services. We
describe the role of YoctoDB in the architecture of indexing
and search components, it’s simple data model, client API,
design, implementation and use cases. We conclude the pa-
per with limitations of the approach and directions of future
development.
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CCS Concepts
•Information systems→DBMS engine architectures;
Information storage technologies; •Software and its en-
gineering → Real-time systems software;

1. INTRODUCTION
Over the last three years we have designed, prototyped,

implemented, tested and successfully deployed an embedded
engine for partitioned immutable-after-construction databases
called YoctoDB. Initial development started as an ambi-
tious attempt to replace the search engine based on Apache
Lucene1. Main goals were improving search latencies and

∗The source code of Java implementation is available at
https://github.com/yandex/yoctodb
1https://lucene.apache.org
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shrinking the search cluster of many tens of nodes. Yoc-
toDB is designed to achieve extremely fast throughput and
low latency querying at the price of database construction
resources invested in building efficient persistent data struc-
tures which support low-memory runtime overhead and cheap
database reopening to comprise constantly arriving index
updates.

YoctoDB is used for a variety of demanding workloads in-
cluding latency-sensitive data delivery to end users. One no-
table example is the backend of Yandex.Auto2 and Auto.ru3

with multi million monthly audience4 under load of thou-
sands search requests per second including complex multi-
field queries over more then million document index updated
every minute.

Once constructed a YoctoDB database logically resem-
bles a simple traditional SQL database containing only one
table and supporting SELECT queries with a variety of fil-
tering and ordering conditions through SQL-like DSL. Yoc-
toDB doesn’t support nested and GROUP BY queries yet due
to unpredictable temporary memory consumption which is
an important factor in real-time use cases. YoctoDB doesn’t
enforce a static data schema and treats all filterable and
sortable fields as comparable arrays of bytes which can be
considered flexible or error prone depending on the use case.
As a matter of fact, YoctoDB can be regarded as another
implementation of the principle stating that the more spe-
cialized technology is the more performant it might be.

Section 2 describes the role YoctoDB plays in the architec-
ture of search backends, the set of goals and constraints and
motivation for the initial development. Section 3 specifies
the data model in detail and Section 4 provides an overview
of the API. Section 5 describes the fundamentals of the Yoc-
toDB implementation and Section 6 explains low-level de-
tails and particularities of Java implementation. Section 7
provides performance measurements using real queries and
lists YoctoDB use cases. Section 8 describes directions for
future work. Finally, Section 9 overviews related work and
Section 10 presents our conclusions including limitations of
the current implementation.

2. MOTIVATION
Yandex.Classifieds indexing and search backends imple-

ment horizontal partitioning scheme depicted in Figure 1
and thoroughly described by the authors [13].

2https://auto.yandex.ru
3https://auto.ru
4https://stat.yandex.ru/Russia/Auto



Figure 1: Document processing pipeline
The set of raw offers is partitioned so that possible duplicates are placed into the same partition.

In this case 3 partitions contain offers of 5 partners.
A new version of partner2.ru offer feed contains updated offer1 mapped to partition1 and unmodified offer2 mapped

to partition2. offer3 is not present in the feed anymore, so it is going to be removed from partition3.
The changes applied trigger reindexing of partition1 and partition3 by the nodes from the Indexing Cluster. As a result,
corresponding immutable partition indexes 1.yocto and 3.yocto are produced and delivered to local file storage *.yocto of

each node in the Search Cluster.
Nodes in the Search Cluster periodically reopen the composite database from local *.yocto file storage to comprise the

latest indexes of all the partitions and to serve updated data to Users’ requests.

Indexing Cluster capacity and performance affects the rate
of offer reindexing and the resulting time between an of-
fer update accepted by the system and the updated offer
made accessible to user requests. The throughput of In-
dexing Cluster can be increased by horizontal scaling i. e.
adding extra nodes to the cluster.

Search Cluster serves user requests and demands the high-
est level of availability, the strictest latency requirements
and ability to reopen the composite database quickly and
without extra costs to handle the rate of incoming parti-
tion updates. At the same time Indexing Cluster has softer
availability requirements, because in case of being offline it
just stops users from getting fresh updates, but the outdated
database can still be used to serve requests.

Strictly speaking, Users in Figure 1 are not human be-
ings, but other services communicating with Search Cluster.
The query language provided by Searcher supports selecting
the subset of documents conforming to multiple (in)equality
conditions joined by logical predicates and it is thoroughly
described in Section 4.

Requirements
As a result of the architecture analysis we have declared
the following high-level nonfunctional requirements and con-
straints for the YoctoDB design:

• Query throughput and latency metrics are paramount

• Query throughput and latency must be stable and de-
terministic

• A composite database must be able to be reopened
without extra cost in additional memory or prepro-
cessing required

• We can afford to spend more computing resources in
the indexing phase to improve throughput and/or la-
tency in the search phase

• Usually database files reside in disk cache, because
they have been received recently

We will try our best to link the design decisions described
in the following sections to the requirements listed above.

3. DATA MODEL
YoctoDB database is a collection of documents. A doc-

ument has an optional payload represented by an opaque
array of bytes and a set of named field values stored as
comparable arrays of bytes. There are several field types
supported:

• Filterable fields for extracting corresponding docu-
ments using possibly multiple (in)equality or range
conditions at querying stage

• Sortable fields for ascending/descending and possibly
composite ordering of filtered documents

• Full fields for both filtering and sorting

Filterable fields may have 0, 1 or more values for each
document that enables storing and indexing multi-valued
fields, for instance tags. Sortable fields require exactly one
value for each document.

YoctoDB provides conversions from primitive values to
comparable byte arrays which are stored persistently and
used during querying phase.

Composite YoctoDB database is a logical entity treating
a set of basic YoctoDB databases as a whole. It applies a



user query to each of the underlying databases and merges
the results in the streaming way according to the specified
ordering directives.

Example
As an example consider a car selling offer:

• The payload is a serialized rich offer object containing
description, image URLs, etc.

• Filterable region_id field as a byte array representa-
tion of the offer geographic region identifier

• Filterable mark field as a byte array representation of
the ASCII string value: FORD, BMW, etc.

• Filterable model field as a byte array representation of
the ASCII string value: FOCUS, X6, etc.

• Sortable date field as a big-endian byte array repre-
sentation of the offer creation date converted to int

UNIX time with seconds precision

• Full price field as a big-endian byte array representa-
tion of the offer long price in cents

This document schema allows for the following example
queries5:

• Count all the offers having the specified region_id

value

• Show top 10 offers having the specified value of re-

gion_id, mark equal to BMW, price in range [10000$,

20000$] and order the offers by date descending

It is straightforward to suggest an isomorphic SQL model
(see Listing 1) and SQL queries (see Listing 2).

Listing 1: Example SQL model
CREATE TABLE o f f e r s (

id INT AUTO INCREMENT,
payload BLOB,
r e g i o n i d INT,
mark TEXT,
model TEXT,
date TIMESTAMP,
p r i c e BIGINT ) ;

CREATE INDEX r e g i o n i d i d x
ON o f f e r s ( r e g i o n i d ) ;

CREATE INDEX mark idx ON o f f e r s (mark ) ;
CREATE INDEX model idx ON o f f e r s ( model ) ;
CREATE INDEX date idx ON o f f e r s ( date ) ;
CREATE INDEX p r i c e i d x ON o f f e r s ( p r i c e ) ;

Listing 2: Example SQL queries
SELECT COUNT(∗ ) FROM o f f e r s

WHERE r e g i o n i d = : r e g i o n i d ;

SELECT payload FROM o f f e r s

5All the example field values need to be converted to com-
parable arrays of bytes corresponding to the mapping used
during the database construction phase.

WHERE
r e g i o n i d = : r e g i o n i d AND
mark = ”BMW” AND
p r i c e BETWEEN (1000000 , 2000000)

ORDER BY date DESC
LIMIT 10 ;

If region_id field is always specified as a first condition
clause in real queries (that quite often is the case) an exam-
ple composite database could be partitioned by this field to
narrow the search space.

4. API
YoctoDB is an embedded database engine supporting two

distinct APIs:

• Mutable database building API including database
serialization

• Immutable database querying API including opening
the serialized database

Persistent YoctoDB database serialization format is lan-
guage agnostic, but only Java API is implemented at the
moment, so the examples below use Java.

The common sequence of API calls looks the following
way:

1. Create a database builder

2. Create zero or more document builders, for each one:

(a) Optionally set payload

(b) Set zero or more field values

(c) Add the document builder to the database

3. Build and serialize the immutable database

4. Open the immutable database

5. Optionally construct a composite database from im-
mutable ones

6. Run zero or more queries against the database

7. Close the database

The calls before database serializing use mutable API, the
calls after opening the serialized database use immutable
API. Listing 3 shows an example of a YoctoDB session using
both APIs6.

4.1 Mutable
Mutable API works with in-memory database representa-

tion optimized for convenient traversal, analysis and post-
processing during the subsequent serialization phase. The
details are described in Section 5.

There are many overloaded implementations of withField()
method converting different primitive values to comparable
byte arrays. For instance, integer types are converted to
fixed-length big-endian representation. In case of a missing
conversion a user may construct an instance of Unsigned-

ByteArray herself and pass it to withField() method.

6Java imports are omitted to save space.



Figure 2: YoctoDB file format

4.2 Immutable
YoctoDB query DSL supports the following features:

• Value filtering operators: eq, gt, gte, lt, lte, in, be-
tween

• Boolean combinators: and, or, not

• orderBy multiple fields in ascending or descending or-
der

• skip and limit

• count results

• Apply a custom callback to the filtered documents IDs
in order

• Extract document payload by document ID

• Extract sortable field value by document ID

When supplying field values during query construction a
user must convert primitive values to comparable byte arrays
using the same conversion facilities as used in mutable API.

Document payload is returned as an efficient Buffer view
without allocating extra memory.

5. IMPLEMENTATION
We are going to start with persistent YoctoDB database

format, describe its segments and persistent collections they
rely upon. Finally, query execution is considered, partition-
ing, memory and thread safety aspects are explained.

5.1 Format
YoctoDB file format is depicted in Figure 2. Basically

YoctoDB is serialized to a sequence of bytes encoding Header,
zero or more Segments and Checksum. Header contains
magic byte sequence, database format version and check-
sum length. Checksum is calculated in a streaming way dur-
ing YoctoDB database serializing and is optionally checked
when opening the database.

5.2 Segments
There are several types of Segments:

• Filterable segment for each named filterable field

• Sortable segment for each named sortable field

• Full segment for each named field supporting filtering
and sorting

• Payload segment for document payloads

Each segment starts with a header containing segment size
and type7. Segments are assembled from abstract persistent
collections8.

7Segment headers are omitted in figures.
8When depicting segment examples square brackets denote
lists or sets and curly brackets denote mappings.

Figure 3: Filterable segment structure

Figure 4: Filterable segment example
The segment contains two sorted unique field values: FORD

and BMW. Field mark value FORD appears in documents
numbered 0 and 2, value BMW appears in documents 1, 3

and 4.

Filterable
Filterable segment (see Figure 3) stores a document field
name, a persistent collection representing the sorted set of
unique values and a persistent multi-map from a value index
to indexes of documents having the value which serves as a
reverse index. This layout makes it possible to choose the
subset of unique values conforming to the query condition
using the set of values and extracting corresponding docu-
ment indexes for the values’ indexes using the multi-map.
Figure 4 shows an example of filterable field mark segment.

Sortable
Sortable segment (see Figure 5) in addition to all the data
Filterable segment contains is extended with a persistent
collection directly mapping a document index to the value
index to support extracting document field value by the end
user. Value index to document index multi-map introduced
in Filterable segments supports traversing document indexes
in the value increasing or decreasing order which is used
when executing sorting queries. Figure 6 shows an example
of sortable field date segment.

Full
Full segment representation currently doesn’t differ from
Sortable segment, because Sortable segment is an extension
of Filterable segment and its data structures support all the
necessary filtering and sorting operations.

Payload
Payload segment contains only one persistent collection stor-
ing the indexed list of byte arrays representing documents’
payloads. Figure 7 shows a payload segment example.

5.3 Persistent Collections
YoctoDB segments implementing filtering, sorting and pay-

load extraction9 rely on generic persistent collections:

• ByteArraySortedSet for representing sorted sets of val-
ues used for filtering and sorting

• IndexToIndexMultiMap for storing inverse mapping from
a value index to document indexes

9We are going to use Java class names as collection names
to be concise.

Figure 5: Sortable segment structure



Figure 6: Sortable segment example
The segment contains two sorted unique field date values:

yesterday and today. yesterday value appears in
documents numbered 1 and 4. today value appears in

documents 0, 2 and 3. In addition, the segment contains a
mapping from document index to value index.

Figure 7: Payload segment example
The segment contains documents’ payloads represented as

arrays of bytes and indexed by document number.

• IndexToIndexMap for storing direct mapping from a
document index to the value index

• ByteArrayIndexedList for representing document pay-
loads accessible by document index

Each collection has mutable and immutable implementa-
tion. Mutable implementation is used during in-memory
YoctoDB database construction and populating it with doc-
uments. When serializing YoctoDB an efficient persistent
representation of the collection is built. Afterwards the im-
mutable implementation is used for querying.

Persistent collections substitute the core of the YoctoDB
engine and heavily contribute to its efficiency and perfor-
mance. Each of them is described in details below.

ByteArraySortedSet

The supported operations are:

• Get the element (byte array) by index

• Find the index of the element

• Find the index of the smallest element greater than
the provided element

• Find the index of the greatest element smaller than
the provided element

There are two different implementations of the collection
interface for two distinct use cases. FixedLengthByteAr-

raySortedSet (see Figure 8) is used when all the byte ar-
rays have the same length, for instance, primitive integer
values. VariableLengthByteArraySortedSet (see Figure 9)
is less compact, but it supports storing elements with differ-
ent length, for instance, strings.

Figure 8: FixedLengthByteArraySortedSet format
When finding the element based on its index the element

offset is calculated by multiplying element index and
element size. Binary search is used to find the provided

element.

Figure 9: VariableLengthByteArraySortedSet format
When finding the element based on its index the element

offset is extracted from the offset table.
Binary search is used to find the provided element. Each
comparison includes two steps: extract the element offset

and compare byte arrays starting from the offset.

Figure 10: BitSetIndexToIndexMultiMap format

IndexToIndexMultiMap

The supported operations are:

• Fill the user provided BitSet with value indexes of
keys in the user provided range

• Get ascending/descending iterator for the entry set

There are two different implementations: BitSet-based
(see Figure 10) and List-based (see Figure 11). The most
compact representation is chosen during YoctoDB serializ-
ing.

IndexToIndexMap

The only supported operation is getting the integer value by
an integer key. Figure 12 shows the simple format.

ByteArrayIndexedList

The only supported operation is getting byte array by in-
dex. There are two implementations for fixed size and vari-
able size byte arrays. Storage formats are equal to ByteAr-

raySortedSet formats.

5.4 Query Execution
Query execution consists of three phases:

1. Build a BitSet containing documents’ IDs that satisfy
query filtering predicates using Filterable and/or Full
segments

2. Optionally reorder documents’ IDs according to order

by clauses using Sortable and/or Full segments

3. Optionally10 apply a user supplied callback to each
document in order11 until the callback signals to stop
iteration or the iterator exhausts

10If it is not a count request case.
11Document callback may extract document payload and/or
sorting field values from the database.

Figure 11: IntIndexToIndexMultiMap format



Figure 12: IndexToIndexMap format
Element size is implicit, because elements represent

fixed-sized integer indexes.

Two aspects are worth mentioning with regard to docu-
ment filtering. First, all the filtering predicates joined by
boolean operators are applied according to the query syn-
tax tree order to fulfill the initial requirement about latency
stability and determinism (see Section 2). In other words,
no query optimizer exists.

Second, short circuiting is implemented: as soon as it
is obvious that the result is empty the query completes.
This feature is extensively used with composite databases
described below.

5.5 Partitioning
Composite database is a collection of simple databases.

Composite database query execution engine runs the query
through each of the underlying databases and merges the
results taking into account optional sorting clauses.

In practice, it is advantageous to partition data based on
real user queries and to rely on short circuiting implemented.
For instance, if all the real user queries start with a filter on
geographical region ID, then geo partitioning will substan-
tially reduce the search space, because composite database
query execution engine will quickly drop all the irrelevant
simple databases due to short circuiting.

5.6 Memory
Current implementation of YoctoDB relies on read-only

mmapped files through Java MappedByteBuffer facilities. No
data is loaded into Java heap apart from small metadata
including field names, sizes and elements count. It means
that almost no resources are spent on database reopening,
so it is fast and cheap. Opening recently received database
files is especially fast, because usually they reside in the
write-through disk cache if the memory subsystem allows
for it.

Query engine allocates a minimal sufficient number of
BitSets necessary for calculating and storing filtered doc-
ument IDs when interpreting the query syntax tree. Each
BitSet requires 1/8 ∗ documents bytes. Sorting after fil-
tering is implemented in a streaming way with respect to
optional skip and limit constraints.

Typically, a request querying a database containing sev-
eral million documents leads to allocating only about a megabyte
of additional memory in Java heap which is quickly garbage
collected because of the small amount of relatively large ar-
rays. Contemporary garbage collectors with throughput of
many GB/s make possible handling thousands of complex
queries per second.

5.7 Thread Safety
Due to being immutable YoctoDB currently doesn’t use

any synchronization primitives which leads to perfect CPU
scaling. BitSets are allocated and used per thread per re-
quest.

The only issue that might arise in practice is the neces-
sity for coordination when freeing database resources after
switching to a freshly reopened database. This can be imple-

mented using Java Phaser synchronization primitive. Nev-
ertheless, the issue affects only the system maintenance not
the query performance.

6. REFINEMENTS
This section explains low-level details of YoctoDB Java

implementation currently being used in production and the
lessons learned. We hope it will help contributors or any-
body willing to implement anything similar.

6.1 64-bit
Due to Java ByteBuffer supporting only 32-bit address-

ing we had to implement own Buffer abstraction support-
ing 64-bit operations and delegating to a sequence of non-
overlapping Java ByteBuffers.

We hope that future Java versions will provide 64-bit ad-
dressing facilities, which will improve the performance and
will make YoctoDB Buffer implementation redundant.

6.2 BitSet pools
It looked quite natural to implement BitSet pooling, pos-

sibly thread-local, to reuse the instances and to decrease
GC load. Practical experiments showed no latency or CPU
utilization profit gained.

This result might be caused by low cost of garbage col-
lecting a small amount of short-lived arrays that underlie
BitSet objects.

6.3 unmap

Current Java MappedByteBuffer implementation postpones
real unmapping until the buffer finalization stage which hap-
pens during garbage collecting it. YoctoDB object graphs
are small, but relatively long-lived and are usually promoted
to the old generation. At the same time, one of the goals
of GC tuning is to make full GC pauses as infrequent as
possible. It is obvious, that these aspects contradict each
other.

We have observed accumulation of millions of file descrip-
tors pointing to not yet unmapped, but already non-existent
files. When GC actually happened, we noticed huge JVM
pauses due to millions of system unmapping calls.

As a workaround we have to force invocation of the corre-
sponding private java.nio.DirectByteBuffer cleaner call-
ing unmap in application code as soon as the database stops
being used12. This solution was borrowed from Apache
Lucene MMapDirectory13. Unfortunately it will stop work-
ing since Java 914.

6.4 Roaring BitSets
We have experimented with replacing persistent BitSetIndex-

ToIndexMultiMap and IntIndexToIndexMultiMap (see Sec-
tion 5.3) by Roaring bitmaps15 described in [1, 10].

Unfortunately, Roaring Bit Set Java implementation we
used16 is not optimized for read-only databases. The over-
head of reopening a huge number of persistent collections

12This feature has not been included into the open-sourced
YoctoDB code base yet.

13https://github.com/apache/lucene-solr/blob /mas-
ter/lucene/core/src/java/org/apache/lucene/s-
tore/MMapDirectory.java

14https://issues.apache.org/jira/browse/LUCENE-6989
15http://roaringbitmap.org
16https://github.com/RoaringBitmap/RoaringBitmap



based on ImmutableRoaringBitmap was memory prohibitive
due to noticeable heap pollution. We might consider reim-
plementing the approach with read-only optimization in mind.

6.5 Versioning
We would like to highlight the importance of proper ver-

sioning of persistent formats. Currently YoctoDB format
version stored in the header is incremented as soon as any
non-compatible persistence change occurs, for example, a
new segment format is added or the existing persistent col-
lection layout is changed. We plan to support backward
compatibility in future YoctoDB releases, but at the mo-
ment changes are reflected in the CHANGELOG17 and the for-
mat version is checked at runtime when opening a YoctoDB
database for reading.

Real applications store YoctoDB partitions in directory
structures prefixed with integer database schema version.
This allows easy downgrading after having switched to a
new version and discovered any runtime problems, but it
requires implementing rotation of legacy version data files.

6.6 Document Building
To make the process of YoctoDB document construction

less tedious and error-prone we developed an automatic con-
verter of annotated Java classes to YoctoDB documents us-
ing Java reflection facilities. This feature substantially im-
proved code maintainability because application model classes
and mapping to YoctoDB data model are co-located.

We hope to release yoctodb-converter as a separate open-
source project.

6.7 Index Transport
Figure 1 shows the role of YoctoDB in the document pro-

cessing pipeline. Each YoctoDB database built by an In-
dexer process needs to be delivered to each Searcher node.
In our deployment there are multiple Searcher nodes in
many geographically distributed datacenters.

If an Indexer process sends databases to each one of Searcher
node itself, it can easily overflow the local network interface
making it a bottleneck. Besides, inter-datacenter links have
limited network throughput (compared to intra-datacenter
fabric) and higher latencies.

We developed a reliable transport mechanism18 optimiz-
ing inter-datacenter traffic and increasing scalability of the
system that works the following way:

1. Each Searcher instance registers in Discovery Service19

in the group corresponding to local datacenter

2. After building a YoctoDB database Indexer process
sends it to a random Searcher node in each datacenter

3. Each Searcher unit having received from Indexer and
persisted a YoctoDB database retransmits it to other
Searcher nodes in local datacenter

Therefore a YoctoDB database is sent by Indexer only
to a small number of Searcher nodes limited by the num-
ber of datacenters. Each Searcher instance uses fast intra-
datacenter links to deliver the database of other local nodes.

17https://github.com/yandex/yoctodb/blob/master
/CHANGELOG

18As an Akka Extension: http://doc.akka.io/docs/
19Currently we use Apache Zookeeper for service discovery:
http://zookeeper.apache.org

Table 1: Synthetic key-value performance (µs)
Database Mean Max 95%
YoctoDB 30 162 47
Lucene 156 505 174

H2 1858 2342 2001
SQLite 1930 2597 2186

If the number of nodes in each datacenter is too high, the
same approach can be used to implement a rack aware trans-
port.

7. REAL APPLICATIONS
The first application to integrate YoctoDB was Yandex.Auto

which originally had been using Apache Lucene as a search
backend. Before initiating a full-blown YoctoDB project we
had built a prototype to evaluate several alternatives includ-
ing H220 and SQLite21.

7.1 Synthetic Performance
The slowest Yandex.Auto search queries filter a large por-

tion of the documents and then aggregate the results, for in-
stance, group the documents and calculate field value ranges.
At the same time, these queries happen quite often.

We have compared the database engines using a simple
synthetic benchmark to test the performance in read-only
mode with dataset size similar to real use cases. The data
model is a table with two columns:

• id — primary key storing a row number

• f — indexed field containing md5(id % 10) value

SELECT COUNT(id) FROM test WHERE f = ? is used as a
query.

The test machine has the following configuration:

• 2 x Intel Xeon E5-2660

• 128 GB DDR3 RAM

• 300 GB SSD

• Ubuntu 12.04.4 LTS

Table 1 shows the results for databases containing 1M
documents.

7.2 Yandex.Auto
Having implemented and integrated YoctoDB into Yan-

dex.Auto we started comparing it with the previous Lucene-
based version of the application using real user queries in
equal environment. The search index contains approximately
2M documents divided into 1024 partitions placed onto SSD.

Table 2 shows response time under constant 50 rps load.
YoctoDB percentiles are 2x better and it consumes 2x less
CPU at the same time. Also we noticed that CPU load is
much steadier in the YoctoDB case.

Under extreme load the YoctoDB implementation handles
400 rps and the Lucene based approach handles 170 rps with
metrics conforming to service level objectives.

20http://www.h2database.com
21http://www.sqlite.org/



Table 2: Constant 50 rps Yandex.Auto latency (ms)
Percentile YoctoDB Lucene

98% 150 300
95% 100 200
75% 45 100
mean 28 50

Table 3: Auto.ru 500 rps latency (ms)
Metric 50% 75% 90% 95% 99% 99.9%
Value 6 20 40 50 70 200

Index size in YoctoDB case occupies 2.3 GB. Apache Lucene
database needs 3.4 GB. Raw document payloads serialized
to Protobuf in both cases occupy 1.8 GB.

All the metrics listed above were measured using early
YoctoDB releases. Latest YoctoDB versions demonstrate
even higher performance which is supported by stress tests
in Auto.ru described below.

7.3 Auto.ru
Auto.ru search index contains 0.5 M documents divided

into 1024 partitions occupying 3-4 GB in total. New parti-
tion updates are incorporated into the index every minute.
All the partitions are updated every several minutes. Each
document has a payload containing car offer serialized us-
ing Protobuf and almost hundred filterable and/or sortable
fields.

Table 3 shows YoctoDB response time under constant
500 rps load. CPU usage doesn’t exceed 30% despite Yoc-
toDB partitions being received and reopened in background.

The critical load YoctoDB can handle using real Auto.ru
requests while conforming to the SLA is 1200 rps (see Fig-
ure 13). Having reached this limit YoctoDB saturates CPU
and the latency noticeably degrades (see Figure 14).

Queries
It is not obvious, but many of the aforementioned HTTP re-
quests actually transform into multiple and often sequential
YoctoDB queries.

Some typical query examples:

• Find car offers in a geo bounding box

• Build search result page with commercial offers using
several queries with additional filters and sorts and
subsequent merging of the results

Figure 13: Auto.ru response time under load (ms)

Figure 14: Auto.ru CPU usage under load

• Find car offers in YoctoDB offer index, find car con-
figurations in YoctoDB car catalog, join the sets using
configuration_id

7.4 Other
YoctoDB is used in many other services including:

• Yandex.Realty22 database of buildings

• Yandex.Travel23 partitioned hotel database

• Read-only resources that need periodic rebuilding and
distributing: dictionaries, catalogues, lists, etc.

• Auxiliary resources used in Hadoop Map-Reduce jobs
and delivered through Distributed Cache

8. FUTURE WORK
We are going to describe some features we consider imple-

menting in the nearest future.

Tracing and Introspection
YoctoDB is definitely lacking tools for database binary file
introspection and conversion to human readable formats.
Dynamic query tracing capabilities are rather limited yet.
This toolchain will help developers with finding and fixing
inefficiencies in database representation and querying.

Better Collections
There is a huge space for improving YoctoDB performance
by implementing more compact and/or faster cache friendly
persistent collections. We plan to improve binary value
search in sorted sequence of values by implementing per-
sistent cache friendly tree-based or sampled data structures
that look promising [7, 6, 3, 11]. Another direction of possi-
ble optimization is leveraging CPU SIMD instructions[14].

Parallel Querying
Parallel querying a partitioned database might be advanta-
geous in certain use cases when a client is willing to spend
more CPU time to improve query latency. Parallel filtering
can be easily implemented in the current architecture using
Java ForkJoinPool. However, BitSets will become shared
between different threads during the merge stage that might
cause some performance penalties. This feature demands
more experiments and measurements on real load.

22https://realty.yandex.ru
23https://travel.yandex.ru



Block Compression
Documents in YoctoDB partitions naturally share common
payload subsequences, so it might be useful to implement
some type of fast compression. We plan to implement op-
tional payload block compression using LZ4 or Snappy codec
and evaluate the effect.

Optimized Roaring Bit Sets
As described in Section 6.4 the existing implementation of
the concept didn’t produce any profit in YoctoDB case. The
idea still looks promising and we are going to implement a
prototype of Java heap friendly roaring bit set to better
compress document IDs and to improve query performance.

Bloom Filters
Bloom filters might be advantageous for speeding up a doc-
ument lookup using equality condition with highly selective
document field, for instance, user provided document IDs,
due to fast dropping of partitions not containing the docu-
ment.

Database Merge
Finally, YoctoDB has been designed with possibilities for
implementation of database merge algorithms in mind. It
might be useful from the maintenance point of view, because
constructing a YoctoDB database requires Java heap size
linear of the database size. Managing and tuning large heap
may be troublesome, so it might be easier to build smaller
partitions and then merge them into bigger ones. Merge
process may be implemented by joining payload segments
without extra memory and remapping IDs in filtering and
sorting segments using much smaller amount of memory.

9. RELATED WORK
There are many implementations of immutable key-value

file storages stemming from log-structured merge-tree ap-
proach [12] made popular by Google Bigtable [2], Apache
Cassandra24 [9] and Apache HBase25 [5]. Embedded databases
implementing the same approach exist, for instance, Lev-
elDB26.

Despite being popular, these solutions are designed to
achieve different goals including high write throughput and
low latency of key-value requests. At the same time Yoc-
toDB provides a facility for complex queries including many
indexed and sorted fields without spending much memory
for request processing. Nevertheless it might be possible to
replace YoctoDB filtering and sorting segments with SSTa-
bles (one SSTable per each indexed field).

Foundational results for universal in memory database
systems exist [4], but most of these approaches are focused
on mutable relational databases. These systems have to
use safe in the worst case algorithms, because they don’t
know the distribution and amount of data in advance and
they try to optimize IO. YoctoDB is able to choose op-
timal data structures and query execution strategies, be-
cause much more information about data is available. Usu-
ally SQL DBMSes are IO bound, while YoctoDB is CPU
bound [8].

24http://cassandra.apache.org
25http://hbase.apache.org
26https://github.com/google/leveldb

Finally, there are many notable results in persistent data
structures [11], but they are focused on effective sharing
of substructures when mutating collections. On the con-
trary, YoctoDB builds efficient immutable data structures
once and queries them multiple times.

10. CONCLUSIONS
We have described YoctoDB, an embedded engine for ex-

tremely fast partitioned immutable-after-construction databases.
YoctoDB has been used in production since 2014 and still
obtains new customers.

Despite being fast, YoctoDB has several limitations root-
ing in the design that might affect its usage and need to be
specified clearly. There is no enforced schema support yet.
YoctoDB core represents all values as byte arrays, so a user
might mix them up by using a wrong conversion or a wrong
field name without getting any runtime error. There is no
query optimizer, so a user should be careful when construct-
ing queries. Nested queries are not supported, that might
be a limiting factor. Finally, all the presented benchmarks
work with databases that fit into disk cache.

Having replaced Apache Lucene by YoctoDB we have sub-
stantially improved application latencies and got rid of tens
of machines due to much higher throughput of each node.
Nevertheless, there are vast opportunities for future im-
provements we are going to work on.
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Listing 3: YoctoDB session example
// Get curren t database format
DatabaseFormat format =

DatabaseFormat . getCurrent ( ) ;

// Create a mutable database
DatabaseBui lder dbBui lder =

format . newDatabaseBuilder ( ) ;

// Add f i r s t document
dbBuilder . merge (

format . newDocumentBuilder ( )
. w i thFie ld ( ” id ” , 1 , FILTERABLE)
. wi thFie ld ( ”s co r e ” , 0 , SORTABLE)
. withPayload ( ”payload1 ” . getBytes ( ) ) ) ;

// Add another document
dbBuilder . merge (

format . newDocumentBuilder ( )
. w i thFie ld ( ” id ” , 2 , FILTERABLE)
. wi thFie ld ( ”s co r e ” , 1 , SORTABLE)
. withPayload ( ”payload2 ” . getBytes ( ) ) ) ;

// Bui ld and s e r i a l i z e the immutable database
ByteArrayOutputStream os =

new ByteArrayOutputStream ( ) ;
dbBui lder . bu i ldWri tab le ( ) . writeTo ( os ) ;

// Open the immutable database
Database db =

format . getDatabaseReader ( ) . from (
Buf f e r . from (

os . toByteArray ( ) ) ) ;

// Find the second document
Query doc2 =

s e l e c t ( ) . where ( eq ( ”id ” , from ( 2 ) ) ) ;
a s se r tTrue (db . count ( doc2 ) == 1 ) ;

// F i l t e r and s o r t

Query so r t ed =
s e l e c t ( ) . where (

and (
gte ( ” id ” , from ( 1 ) ) ,
l t e ( ” id ” , from ( 2 ) ) ) )

. orderBy ( desc ( ”s co r e ” ) ) ;

L i s t<Integer> i d s =
new LinkedList<Integer >() ;

db . execute (
sorted ,
new DocumentProcessor ( ) {

@Override
public boolean proce s s (

f ina l int document ,
f ina l Database database ) {

i d s . add ( document ) ;
return true ;

}
} ) ;

a s s e r tEqua l s ( a s L i s t (1 , 0 ) , i d s ) ;


