
Streaming matching of events

Dmitry Schitinin
Yandex.Classifieds

dima.schitinin@gmail.com

Vadim Tsesko
Yandex.Classifieds

mail@incubos.org

ABSTRACT
Streaming matching of events based on its content has many
applications including customer subscriptions or recommen-
dations for new ads. Customer subscriptions system requires
minimal delay between event appearance and corresponding
notifications. Such system should be horizontally scalable
with regard to events and customers. There are many ap-
proaches to solving this task ranging from brute-force ones
to utilizing some complex data structures. We present our
approach integrated into several high-loaded production ser-
vices at Yandex.Classifieds.

Keywords
Publish-subscribe; content-based matching; content-based
filtering; parametric search

CCS Concepts
•Information systems→ Document filtering; Service dis-
covery and interfaces; •Computer systems organization
→ Reliability; Availability; Redundancy;

1. INTRODUCTION
Publish-subscribe paradigm has many advantages includ-

ing loose coupling and horizontal scalability. According to
[8] these systems can be classified by their key features.
Among them are:

• Subject-based or content-based

• Event matching algorithm

• System architectrue

In subject-based pub/sub systems subscribers express their
interest in terms of subjects or topics. In contrast content-
based systems allow subscribers to register their requirement
on receiving events in terms of event content.

Depending on pub/sub system type different event match-
ing algorithms are used. For subject-based systems simple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CEE-SECR ’16, October 28 - 29, 2016, Moscow, Russian Federation
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4884-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3022211.3022218

table lookup approaches are acceptable. Algorithms used
for content-based matching are more sophisticated.

Customers subscriptions systems are naturally publish-
subscribe systems with content-based events matching. In
addition these systems require minimal delay between an
event appearance and the corresponding notification. Such
systems have to be horizontally scalable to handle more
events and to service more customers.

There are many approaches to solving this task. Some of
them focus on matching algorithm efficiency and other re-
fer to system architecture for efficient distribution of events
and delivery of notifications. As for our knowledge all these
systems require holding all subscriptions in the main mem-
ory at each server of the system to perform matching and
routing. The existing approaches are discussed in Section 5.
It’s obvious that the requirement to hold all subscriptions on
each server limits system horizontal scalability and doesn’t
allow to run these systems on commodity hardware.

The main focus of this paper is on scalable distributed
architecture that can be effectively deployed on commodity
hardware.

We present an approach integrated into several high-loaded
production services. Section 2 introduces some basic con-
cepts and describes the events matching algorithm. We de-
scribe production subscriptions system design in Section 3.
Some implementation details are discussed in Section 4. Re-
lated works are overviewed in Section 5. Possible improve-
ments of the approach are described in Section 6. Section 7
concludes the paper.

2. MATCHING ALGORITHM
An event matching algorithm is the core of a content-

based matching system.
Event is as a set of terms and a payload represented by

opaque array of bytes. Term has a name and a value. Term
name is a non-empty string. Term value may be of various
kinds:

• Fixed value is represented by string

• Range value is a one-dimensional interval represented
by pair of numbers, one of the borders may be absent

• Vertex value is a two-dimensional point on the plane
represented by a pair of real numbers

• Polygon value is a two-dimensional polygon on the
plane represented by a sequence of plane points

2.1 Coverage
There is a non-symmetrical relation among terms called

covers. A term covers another one if their names are equal
and their values cover according to the next natural rules:

• Fixed covers other Fixed if their underlying values are
exactly equal

• Range covers Fixed if the Fixed value is numeric and
is included into the Range interval

• Range covers other Range if their underlying intervals’
intersection is non-empty

• Vertex covers other Vertex if their coordinates are ex-
actly equal

• Polygon covers Vertex if the vertex is within the poly-
gon

The model and the coverage relation can be extended fur-
ther depending on the specific use case.

2.2 Filters
Events are passed through Filters and may be accepted

or rejected. Filter is defined as:

• TermFilter (TF) is determined by a term. It accepts
an event if the event contains a term covered by the
filter term.

• AndFilter (AF) contains a collection of filters and
accepts events accepted by all of the underlying filters

• OrFilter (OF) contains a collection of filters and ac-
cepts events accepted by some of the underlying filters

• NotFilter (NF) contains a filter and accepts events
rejected by the underlying filter

2.3 Filter by event
Consider an event and a set of filters. The task is to

choose filters from the given set which accept the event.
This problem is also known as ”Content based matching”
and there are some related works in [1, 9, 10, 6]. A naive
solution is obvious: test in succession whether filter accepts
the event or not. But with growing size of the set of filters
this solution will stop working. A smarter solution with
complexity depending on the number of different term names
might be acceptable.

Having event E with terms Te1, Te2, ..., Ten consider
various filter sets. For brevity we will refer to TermFilter
underlying term name and value as a filter name and a filter
value.

Let all filters be TermFilters containing terms Tf1, Tf2,
..., Tfm. To select filters which accept event E we can take
its first term Te1 with name Te1.name, find a filter from
the set with the same name (containing term with the same
name) and test whether its term value covers Te1 value or
not. By repeating this operation for the rest of the event
terms Te2, Te3, ..., Ten we will select all filters accepting
event E. Note that we can find TermFilter with particu-
lar name in constant time using HashMap (HashDictionary)
data structure.

Let us consider a single AndFilter AF containing several
TermFilters TF1, TF2,..,TFm. We need to test whether

Figure 1: AndFilter as a path
The path represents AF(TF(name 1, value 1), TF(name

2, value 2), ..., TF(name n, value n)

event E is accepted by AF or not. Each TermFilter TFi

within AF should accept event E. We can introduce an
order on terms’ names (in simple case it may be the lexico-
graphical one). For acceptance testing we take the first term
using this order from event E. Denote it TEfirst. Then try
to take TermFilter TFfirst from AF with the same name.
The next cases are possible.

• TFfirst exists and rejects term TEfirst. It means that
AndFilter AF rejects event E.

• TFfirst exists and accepts term TEfirst. It means that
we should test acceptance of the term with the next
name by the order.

• Filter doesn’t exist. It means AndFilter AF doesn’t
impose a condition on the term and as above we should
move on to the next name as in the previous case.

Having an order defined on terms names AndFilter AF
may be represented as a path with edges marked with term
names and vertices containing term values as shown on Fig-
ure 1.

Testing event E by filter AF can be represented as passing
of the event through this path with gradual removal of terms
from the event.

Having several AndFilters containing only TermFilters we
can merge corresponding paths into a tree as shown on Fig-
ure 2. Term values sharing term name are grouped together.
Each terminal path value is marked by the corresponding fil-
ter.

More formally, a tree node may be defined as a recursive
structure with the next fields:

• value having term value type

• filters a set of filter IDs, possibly empty

• children a mapping from the term name into the set
of nodes

2.4 Algorithm of descent
Having event E and merged AndFilters we can select the

filters accepting E by the event ”descending” down throught
the tree starting from the root. Recall that there is an order
on the term names. Tree descent recursive Algorithm 1 is
applied to a tree node and a list of the event terms. Event
terms appear in the list according to the defined order. Fil-
ters fields of all visited nodes contain IDs of filters which
accept event E.

Consider an example. Let event E have the following
terms:

• T1 = Term(name 1, value A)

• T2 = Term(name 2, value D)

Figure 2: Merged AndFilters into a tree
This tree is the merge result of

• A1 = AF(TF(name 1, value A), TF(name 2, value

D))

• A2 = AF(TF(name 1, value A), TF(name 2, value

E))

• A3 = AF(TF(name 1, value A), TF(name 3, value

F))

• A4 = AF(TF(name 1, value B), TF(name 3, value

F))

• A5 = AF(TF(name 1, value A))

• A6 = AF(TF(name 1, value C))

Algorithm 1 Tree descent

1: result← ∅ . Set of accepting filters
2: procedure descent(node, terms)
3: result← result ∪ node.filters . Add all filters from

the reached node to the accepting set
4: while terms is not empty do
5: head← terms.head . Term with the next name

by the order defined
6: tail← terms.tail . Rest of the terms, may be

empty
7: DESCENT (node, tail) . Descent without

current term
8: children← node.children(head.name) . Set of

nodes with the same term name
9: for all child in children do

10: if child.value covers head.value then
11: DESCENT (child, tail)

• T3 = Term(name 3, value F)

Consider Figure 2. Using algorithm 1 event E descents
through nodes with values A, D, F which means that filters
A1, A3 and A5 accept the event.

An arbitrary filter can be transformed into some kind of
normal form. Using disjunctive normal form with conjunc-
tions AndFilter, disjunction OrFilter and TermFilter literals
we can represent any filter in the form of

OF (AF1(TF1, .., TFn), .., AFm(TFk, .., TFl))

Thereby filters of any structure may be merged into the tree.
Term name ordering affects the form of the tree. It’s fea-

sible to choose filter term name order based on name fre-
quency to make trees less branched to improve the descend-
ing algorithm performance.

2.5 Descent algorithm complexity
We now analyze the time required for event descending in

Algorithm 1. Lines 9-11 select values from the group which
covers given values. Suppose all the values are of Fixed
type. As mentioned above in this case selection may be done
in constant time. Under this restriction we measure event
descent time by counting number of visited nodes. In case of
k distinct term names maximum depth of the tree will be k.
In the worst case on each tree level event will move through
two branches (passing by current term and stripping it) so
total number of visited nodes will be 2 + 22 + ... + 2k.

This exponential complexity is the upper bound of vis-
ited nodes count. Researches in [1] have proven that the
very similar solution has an expected complexity that is sub-
linear in the number of subscriptions in the tree and have
proposed some optimizations.

2.6 Two phase matching
In common case exponential complexity in the number of

term names is not satisfactory for task solving. On the other
hand, linear complexity of the naive solution is not accept-
able too. Hovewer, exponential complexity is the worst case
and as proven in [1] the algorithm has sub-linear complexity
in the number of subscriptions.

The main idea of different approaches with matching trees
is to use subscriptions commonalities to improve efficiency.
The more commonalities subscriptions have the better an
algorithm works. So it’s not beneficial to add unique terms
to the tree, for example, PolygonTerms. It’s unlikely that
two users will select the same polygon on the map while
subscribing to new realty offers. However, the system must
be able to handle such subscriptions.

We have designed a matching process in a following man-
ner. The process is split into two phases: candidate selec-
tion and final revision. We fix a small number of the most
frequently used term names and build the matching tree us-
ing only these terms. It’s called Candidates tree. An event
descending the tree matches subscription candidates that
might accept the event. In revision phase we test explicitly
whether resulted subscriptions match the event or not. This
step has linear complexity in the candidate size.

2.7 Example
Here is a simple example of real world use case that can be

easily expressed in terms of the described model and filtering
algorithm.

Figure 3: Tree of car ads filters

Consider a car selling web site. A car advertisement has a
number of fields including mark, model, year of production
and selling region. A customer can select offers by specifying
its fields values using filters. These document fields and
filters can be expressed using the following terms:

• region of type Fixed

• mark of type Fixed

• model of type Fixed

In addition a car ad can have Fixed term year whereas a
corresponding term within filter may be of Range type since
customer can specify a production year interval.

Consider three customer filters. Using HTTP query part
notation they can be expressed as

• F1: mark=FORD&model=FOCUS&model=MONDEO&year=2016

• F2: year_from=2014&year_to=2016

• F3: mark=FORD&model=MONDEO

Translated into our notation these filters look like:

• F1:

AF(TF(”mark ” , Fixed (”FORD”)) ,
OF(TF(”model ” , Fixed (”FOCUS”)) ,

TF(”model ” , Fixed (”MONDEO”))) ,
TF(”year ” , Fixed (”2 0 1 6 ”)))

• F2:

TF(”year ” , Range (2014 , 2016))

• F3:

AF(TF(”mark ” , Fixed (”FORD”)) ,
TF(”model ” , Fixed (”MONDEO)))

After F1 normalization and merging with F2 and F3 we
will get a tree on Figure 3.

Consider new car ads expressed as events. The first ad A1
consists of terms:

• region: Point("Moscow")

• mark: Point("FORD")

• model: Point("MONDEO")

• year: Point("2016")

The second car ad A2 contains the following terms:

• region: Point("Saint-Petersburg")

• mark: Point("BMW")

• model: Point("3ER")

• year: Point("2015")

A1 descending through the tree on Figure 3 using Algo-
rithm 1 will visit nodes marked by filters F1, F2 and F3. It
means that A1 satisfies to all of them.

Ad A2 visits only node marked by F2 hence satisfies only
this filter.

3. SUBSCRIPTION SYSTEM
It’s often convenient for customers to subscribe to inter-

esting ads and receive notifications about them.
A naive implementation of this feature may include regu-

lar execution of saved search filters and analysis of results.
Despite its simplicity the solution has many disadvantages
such as extra (and often useless) load on search system and
significant delay between a new offer appearance and the
corresponding notifications.

On the other hand, a system providing this feature may
be implemented on top of streaming event matching where
events are new ads and filters are customer-specified condi-
tions within subscriptions.

There are several functional requirements to the system:

• minimum delay between an ad appearance and the no-
tification of the interested customers

• quick subscription creation and deletion

• ability to select preferred notification transport

Among the non-functional requirements we can highlight
the following:

• horizontal scalability by the number of subscriptions

• horizontal scalability by the number of events to be
matched

• fault tolerance

We have designed and implemented the system conform-
ing to the specified requirements and described it below.

3.1 Architecture
Customers register Subscriptions through the REST API

provided by API component. A Subscription instance con-
tains:

• id – unique identity

• owner – customer who created the subscription

• filter – filters specified by customers and expressed
in concepts from Section 2

Figure 4: Architecture

• delivery – notifications delivery settings including pre-
ferred transport (e-mail, SMS, etc.) and scheduling
(”send notifications every five minutes”)

The web site has a component that identifies new ad ap-
pearance (event source on Figure 4). This component trans-
forms new ads into events consisting of terms described in
Section 2 and equipped with internal ad representation as a
payload. The payload is useful for rendering notifications.
Resulting events are passed to the Matcher component.

Matcher component is responsible for a subset of subscrip-
tions. It receives produced events, finds corresponding sub-
scriptions and emits tuples <event, subscriptions>. The
tuple denotes that the event matches subscriptions and
may be called matching event. Matching events are passed
to the Notifier component.

Notifier is responsible for grouping matching event by sub-
scription, composing notifications and sending them to the
customer according to subscription delivery settings.

The data flow is shown on Figure 5.

3.2 Matcher
Matcher component is the core of the entire subscription

system. It implements the content-based event matching
mechanism. Receiving stream of events it produces stream
of tuples <event, subscriptions>: providing a set of sub-
scriptions interested in the event.

Under the hood Matcher contains filter-by-event mecha-
nism described in Section 2. The filter tree is stored in the
Matcher process main memory since matching event sub-
scriptions should be very fast. As the number of subscrip-
tions grows trees may become huge and might not fit into
the main memory of a single machine. In this case we have
to distribute the tree across several nodes. It’s possible to
do this since subscriptions are independent and having two
or more filter trees requires only that event descend through
each of them. Moreover it can be done in parallel.

Matcher component is a cluster of distributed peer pro-
cesses containing a part of the entire set of subscriptions.
Every matcher instance includes a broadcasting router that
replicates received events to neighbours. Then all matchers
process replicated event independently. This configuration
is shown on Figure 6.

We have several data centers each containing event source.

There is a Matcher cluster in each data center. Each cluster
contains all subscriptions and instances within a cluster dis-
tribute subscriptions among each other. It’s useful to place
the Matcher cluster next to event source within data center
to minimize inter-location traffic. However, in case of local
Matcher cluster unavailability the event source will interact
with the cluster in the nearest location. This intraction is
performed through a system load balancing mechanism. In
our case Haproxy1 is used for this purpose.

3.2.1 Subscription distribution
Subscription distribution among matcher instances is im-

plemented using token distribution. A token is a part of re-
sponsibility that is held by the owner. There is fixed amount
of tokens in the system, typically tens or hundreds. Token
distributor is described in Section 4.2.

Every matcher instance possesses some tokens, sees all
token ownership map and knows the owner of each token.
These ownership instances store some payload like API end-
points of the owner. Matcher routers use this date to per-
form service discovery of all matcher instances within the
cluster.

Having got in possession token t a matcher becomes re-
sponsible for subscriptions with this token. It retrieves them
from the storage and updates his internal tree of filters with
the ones from the subscriptions retrieved.

In addition to Matcher component scalability the token
distribution approach provides its reliability. Having crashed
a matcher instance releases all the possessed tokens so that
the peers can distribute the tokens among themselves thereby
acquiring corresponding subscriptions and resuming event
matching.

After matcher instance processes an event and finds the
appropriate subscriptions it interacts with Notifier compo-
nent by sending it matching events <event, subscriptions>.

3.3 Notifier
Notifier component groups received matching events <event,

subscriptions> by subscription, composes notifications to
the customers and sends them. Notifier uses the same ap-
proach to solve scalability and reliability issues as Matcher
does. Notifier is also deployed cluster of distributed peer

1http://www.haproxy.org

Figure 5: Subscriptions data flow

processes. Every notifier instance is responsible for a part
of entire set of subscriptions assigned by tokens distribution
algorithm. A notifier instance has a router that splits re-
ceived matching event <event, subscriptions> into num-
ber of <event, subscription> events and routes them to
the notifier instance responsible for the subscriptions (maybe
himself). This configuration is shown on Figure 7.

After obtaining token t a notifier becomes responsible for
aggregate events on the subscriptions with this token. Fault
tolerance is implemented in the same way as in the Matcher
cluster.

It is worth noting that tokens from the matcher environ-
ment and from the notifier one are two independent token
set and there are distinct ownership maps and payloads.

3.4 API
API is a cluster of independent stateless processes pro-

viding HTTP REST API for subscriptions CRUD. Every
CRUD operation relies on the persistent storage. In spite
of regular storage polling by matcher instances API signals
the appropriate matcher instance about specific subscription
modifications to speed up the subscription emergence within
Matcher.

3.5 Applications
We have integrated the implemented approach into our

Web services including Auto.ru2, Yandex.Realty3, Yandex.Auto4

and several internal subsystems.
Figure 8 shows matching events rate on our cluster and

the corresponding latency for one of the services with 300K
active subscriptions.

For performing stress testing we have use two data cen-
ters. Each data center contains event source and Matcher
cluster consisting of two matcher instances. The obtained
througput and latency is shown on Figure ??. Figure ??
illustrates the throughtput and latency of a single matching
instance form the cluster.

2https://auto.ru
3https://realty.yandex.ru
4https://auto.yandex.ru

4. REFINEMENTS
In this section we discuss some implementation details.

4.1 Filter tree implementation
We have implemented the model and filters from Section 2

as immutable data structures in Scala5. Immutability al-
lows concurrent event descend and tree updates. We have
adopted Scalacheck6 for filter by event engine testing. This
powerful tool helped us to find several tricky bugs in the
implementation.

4.2 Tokens distributor
There are pieces of responsibility in the system that should

be distributed among parties. A whole ”responsibility” can
be expressed as a set of tokens. It’s convenient to use integer
numbers from interval [0, n) to represent n tokens. Consider
m parties among whom n tokens should be distributed in
disjunctive and fair manner:

• there is no ownerless token

• there is no token with more than one owner

• difference between the richest owner and the poorest
one is no more then one token

We have designed and implemented Token distributor ap-
proach to solve this task. There are three basic actions:

• acquire(owner, token): bool – tries to acquire own-
erless token by owner ; returns true if the acquisition
has been successful and false otherwise (the token has
been acquired by another owner)

• release(owner, token): bool – tries to release owned
by owner token; returns true if token has been suc-
cessfully released and false otherwise (the token is
not possessed by owner anymore)

• steal(owner, token, thief): bool – thief tries to
steal token from its current owner ; returns true if

5http://www.scala-lang.org
6http://www.scalacheck.org

Figure 6: Matcher cluster

Figure 7: Notifier cluster

theft has been successfull (token was really possessed
by owner) and false otherwise

Each party sees entire ownership map and can decide to
do some actions depending on the map configuration. Party
is considered to be:

• rich if there are no parties with greater number of
owned tokens and there is a party with less number

• poor if there are no parties with less number of owned
tokens and there is a party with greater number

To choose the next action a party uses the following rules:

• If the party is single and there is an ownerless token
the party acquires it

• It the party is poor and there is an ownerless token the
party acquires it

• If the party is poor and the distribution is not fair the
party decides to steal a token from a one of the rich
owners (choosen randomly)

• If all the parties have the same number of tokens and
there is an ownerless token the party acquires it

Distributed consensus system is required for implementa-
tion in distributed environment. We use [Apach Zookeeper]7

for this purpose.

4.3 Matcher and Notifier internals
When designing Matcher and Notifier we have adopted

actor model implementation by Akka8.
Having crashed a notifier instance may lose already ac-

cumulated events for subscriptions. To avoid this behavior
notifier instances periodically dump their state to the per-
sistent storage. Having got in possession token t a notifier
instance restores the state of the corresponding subscriptions
from the storage.

5. RELATED WORK
7http://zookeeper.apache.org
8http://akka.io

There are many results on content-based matching and
related topics. They vary by matching algorithm efficiency
and query language expressiveness.

The first work on matching algorithm based on matching
trees is presented in [1]. The approach handles subscriptions
containing conjunction attribute tests. The authors intro-
duce Parallel Search Tree (PST) and calculate expected time
and space complexity of the solution.

The related work [2] uses PST as a matching algorithm
and focuses on efficient event multicasting to subscribers. To
perform this matching and multicasting each broker contain
the entire subscription set in the main memory.

An alternative matching algorithm is proposed in [7]. The
authors describe an approach which uses indexing techniques
for fast matching of atomic conditions and cluster subscrip-
tions to minimize CPU cache misses while refining matched
subscriptions. The approach demonstrates very high match-
ing performance at the cost of the time needed to construct
the matching data structue (tens of minutes or even hours
for millions of subscriptions).

Researchers in [4] notice that approaches to matching in
[1] and [7] are restricted to conjunctive subscriptions. This
restriction leads to the exponential grow of the number of
subscriptions to be submitted to matching mechanism in
case of disjunctive condition presence in the initial subscrip-
tions set. The authors generalize Parallel Search Tree to Bi-
nary Decision Diagram thus preventing exponential grow of
the number of subscriptions without noticable performance
penalty.

The technical report [5] describes Siena content-based no-
tification service. The paper doesn’t specify exact algorithm
used for matching. The survey [8] says Binary Desicion Dia-
grams as in [4] are used for matching while the authors of [4]
say that their filtering engine can be adapted to Siena.

Some ideas described in these papers might be used to im-
prove matching performance of a subscription system. Hov-
ewer all the approaches imply that subscriptions fit into the
main memory of each node in contrast to our solution.

6. FUTURE WORK
The first candidate selection phase has predictable com-

plexity in case of Fixed values. If values of more complex
types occur within the tree more advanced techniques should
be applied for selection of the next node (improvement of Al-
gorithm 1 lines 9-11). Depending on the value type different
indexing approaches may be used, including kd-trees [3] for
ranges and polygons.

7. CONCLUSIONS
We described an approach to content-based event match-

ing and its scalable distributed architecture. The solution is
integrated into several production services. The described
architecture allows for horizontal scalability by adding more
nodes to handle more subscriptions and events. As a result
of deploying the approach we got rid of the naive solution
with regular requests to search system. Thereby we elim-
inated extra load on search system and increased quality
of service for our customers: the latency between event ap-
pearance and the corresponding notifications is under several
seconds.

8. REFERENCES

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman,
M. Astley, and T. D. Chandra. Matching events in a
content-based subscription system. In Proceedings of
the eighteenth annual ACM symposium on Principles
of distributed computing. ACM, 1999.

[2] G. Banavar, T. Chandra, B. Mukherjee,
J. Nagarajarao, R. E. Strom, and D. C. Sturman. An
efficient multicast protocol for content-based
publish-subscribe systems. In Distributed Computing
Systems, 1999. Proceedings. 19th IEEE International
Conference on, pages 262–272. IEEE, 1999.

[3] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[4] A. Campailla, S. Chaki, E. Clarke, S. Jha, and
H. Veith. Efficient filtering in publish-subscribe
systems using binary decision diagrams. In Proceedings
of the 23rd International Conference on Software
Engineering, pages 443–452. IEEE Computer Society,
2001.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems (TOCS), 19(3):332–383, 2001.

[6] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, and
K. Ross. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe Systems. In SIGMOD
Conference, May 2001.

[7] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira,
K. A. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In ACM SIGMOD Record, volume 30, pages
115–126. ACM, 2001.

[8] Y. Liu, B. Plale, et al. Survey of publish subscribe
event systems. Computer Science Dept, Indian
University, 16, 2003.

[9] M. Sadoghi and H.-A. Jacobsen. Location-based
Matching in Publish/Subscribe Revisited. In
ACM/IFIP/USENIX 13th International Conference
on Middleware, 2012.

[10] M. Sadoghi and H.-A. Jacobsen. Adaptive Parallel
Compressed Event Matching. In 30th IEEE
International Conference on Data Engineering, 2014.

Figure 8: Events matching on a cluster

Figure 9: Events matching throughput on a cluster

Figure 10: Events matching throughtput on a node

