
HDFS

Леонид Налчаджи
leonid.nalchadzhi@gmail.com

mailto:leonid.nalchadzhi@gmail.com
mailto:leonid.nalchadzhi@gmail.com

Intro

• Hadoop ecosystem

• History

• Setups

2

HDFS

• Features

• Architecture

• NameNode

• DataNode

• Data flow

• Tools

• Performance

3

Hadoop ecosystem

4

Doug Cutting

5

History

• 2002: Apache Nutch

• 2003: GFS

• 2004: Nutch Distributed Filesystem
(NDFS)

• 2005: MapReduce

• 2006: subproject of Lucene => Hadoop

6

History

• 2006: Yahoo! Research cluster: 300 nodes

• 2006: BigTable paper

• 2007: Initial HBase prototype

• 2007: First usable HBase (Hadoop 0.15.0)

• 2008: 10,000-core Hadoop cluster

7

Яндекс

• 2 MapReduce clusters MapReduce (50
nodes, 100 nodes)

• 2 HBase clusters

• 500 nodes cluster is on its way :)

• Fact extraction, data mining, statistics,
reporting, analytics

8

Facebook

• 2 major clusters (1100 and 300 nodes)

• Messages; machine learning, log storage,
reporting, analytics

• 8B messages/day, 2Pb online data, growing
250 Tb/ months

9

EBay

• 532 nodes cluster (8 * 532 cores, 5.3PB).

• Heavy usage of MapReduce, HBase, Pig,
Hive

• Search optimization and Research

10

11

HDFS

12

Features

13

Features

• Distributed file system

• Replicated, highly fault-tolerant

• Commodity hardware

• Aimed for Map Reduce

• Pure java

• Large files, huge datasets

14

Features

• Traditional hierarchical file organization

• Permissions

• No soft links

15

Features

• Streaming data access

• Write-once-read-many access model for
files

• Strictly one writer

16

Hardware Failure

• Hardware failure is the norm rather than
the exception

• Detection of faults and quick, automatic
recovery

17

Not good for

• Multiple data centers

• Low latency data access (<10 ms)

• Lots of small files

• Multiple writers

18

Architecture

19

Architecture

• One NameNode, many DataNodes

• File is a sequence of blocks (64 Mb)

• Meta data in memory of namenode

• Client interacts with datanodes directly

20

Architecture

21

Big blocks

• Let’s say we want to achieve 1% seek
overhead

• Seek time ~10ms, transfer rate ~100 Mb/s

• So block size must be ~100Mb

22

NameNode

23

NameNode

• Manages the FS namespace

• Keeps in Memory all files and blocks

• Executes FS operations like opening,
closing, and renaming

• Makes all decisions regarding replication of
blocks

• SPOF

24

NameNode

• NS stored in 2 files: namespace image, edit
log

• Determines the mapping of blocks to
DataNodes

• Receives a Heartbeat and a Blockreport
from each of the DataNodes

25

NameNode

26

NameNode

• Store persistent state to several file system

• Secondary MasterNode

• HDFS High-Availability

• HDFS Federation

27

28

DataNode

29

DataNode

• Usually 1 DataNode 1 machine

• Serves read and write client requests

• Performs block creation, deletion, and
replication

30

DataNode

• Each block represented as 2 files: data,
metadata

• Metadata contains checksums, generation
stamp

• Handshake while starting the cluster to
verify ID of namespace and SW version

31

DataNode

• NameNode never calls DataNodes

• Replicate block

• Remove local replica

• Re-register/shut down

• Send an immediate block report

32

Data Flow

33

Distance

• HDFS is rack aware

• Network is presented as tree

• d(n1, n2) = d(n1, A) + d (n2, A), A -- closest
common ancestor

34

Distance

35

Read

• Get list of blocks locations from
NameNode

• Iterate over blocks and read

• Verifies checksums

36

Read

• On fail or when unable to connect DN:

• try another replica

• remember that

• tell NameNode

37

Read

38

Read

39

final Configuration conf = new Configuration();

final FileSystem fs = FileSystem.get(conf);

InputStream in = null;

try {

in = fs.open(new Path("/user/test-hdfs/somefile"));

//do whatever with inpustream

} finally {

IOUtils.closeStream(in);

}

Write

• Ask NameNode to create file

• NameNode performs some checks

• Client ask for list of DataNodes

• Forms a pipeline and ack queue

40

Write

• Send packets to the pipeline

• In case of failure

• close pipeline

• remove bad DN, tell NN

• retry sending to good DNs

• block will be replicated asynchronously

41

Write

42

Write

43

final Configuration conf = new Configuration();

final FileSystem fs = FileSystem.get(conf);

FSDataOutputStream out = null;

try {

out = fs.create(new Path("/user/test-hdfs/newfile"));

//write to out

} finally {

IOUtils.closeStream(in);

}

Block Placement

• Reliability/Bandwidth trade off

• By default: same node, 2 random nodes
from another rack, other random nodes

• No Datanode contains more than one
replica of any block

• No rack contains more than two
replicas of the same block

44

Tools

45

Balancer

• Compare utilization of node with
utilization of cluster

• Guarantees that the decision does not
reduce either the number of replicas or the
number of racks

• Minimizes the inter-rack data copying

46

Block scanner

• Periodically scans replica, verifies
checksums

• Notifies NameNode if checksum fails

• Replicate first, then delete

47

Performance

48

Performance

• Cluster ~3500 nodes

• Total bandwidth is linear to number of
nodes

• DFSIO Read: 66 MB /s per node

• DFSIO Write: 40 MB /s per node

49

Performance

• Open file for read: 126100

• Create file: 5600

• Rename file: 8300

• Delete file: 20700

• DataNode heartbeat: 300000

• Block reports (block/s): 639700

50

Sources

• The Hadoop Distributed File System (K.
Shvacko)

• HDFS Architecture Guide

• Hadoop: The Definitive Guide (O’Reilly)

51

HDFS

Леонид Налчаджи
leonid.nalchadzhi@gmail.com

mailto:leonid.nalchadzhi@gmail.com
mailto:leonid.nalchadzhi@gmail.com

