HDFS

NeoHuna Haavapxu
leonid.nalchadzhi@gmail.com

unekc

mailto:leonid.nalchadzhi@gmail.com
mailto:leonid.nalchadzhi@gmail.com

Intro

® Hadoop ecosystem
® History

® Setups

Features

Architecture

NameNode
DataNode

Data flow

Tools

Performance

Hadoop ecosystem

Programming

Pig Languages

(Data Flow)

MapReduce Computation

(Distrib uted Programing Framework)

HLddiog Rl Table Storage
(Meta Data) (Columnar Storage)

HDFS Object Storage

(Hadoop Distributed File System)

= E
S
=]
<3

(Coordination)

Zookeeper

Doug Cutting

History

2002: Apache Nutch
2003: GFS

2004: Nutch Distributed Filesystem
(NDFS)

2005: MapReduce

2006: subproject of Lucene => Hadoop

History

2006:Yahoo! Research cluster: 300 nodes
2006: BigTable paper

2007: Initial HBase prototype

2007: First usable HBase (Hadoop 0.15.0)
2008: 10,000-core Hadoop cluster

AHAEKC

2 MapReduce clusters MapReduce (50
nodes, |00 nodes)

2 HBase clusters
500 nodes cluster is on its way :)

Fact extraction, data mining, statistics,
reporting, analytics

Facebook

® 2 major clusters (1100 and 300 nodes)

® Messages; machine learning, log storage,
reporting, analytics

8B messages/day, 2Pb online data, growing
250 Tb/ months

EBay

532 nodes cluster (8 * 532 cores, 5.3PB).

Heavy usage of MapReduce, HBase, Pig,
Hive

Search optimization and Research

B

opens -19-comf b et i
ecircle SPOUTY ara.comir s

s quantcast oo Annexc

h wikia g rakuten cornell
orsa g liNkedin—

neptune the Iydla news analyms project o

-
o

a‘i‘;’:::ﬁ*’:;zfacebook
ros commason ebay powerset / microsoft
. netseer

telerav fox audience network

e e S Gy (c) 2013 www.hadoopwizard.com

HDFS

Features

13

Features

Distributed file system
Replicated, highly fault-tolerant
Commodity hardware

Aimed for Map Reduce

Pure java

Large files, huge datasets

Features

® Traditional hierarchical file organization
® Permissions

® No soft links

Features

Streaming data access

Write-once-read-many access model for
files

Strictly one writer

Hardware Failure

® Hardware failure is the norm rather than
the exception

® Detection of faults and quick, automatic
recovery

Not good for

Multiple data centers
Low latency data access (<10 ms)
Lots of small files

Multiple writers

Architecture

Architecture

One NameNode, many DataNodes
File is a sequence of blocks (64 Mb)
Meta data in memory of namenode

Client interacts with datanodes directly

Architecture

HDFS Architecture

Metadata (Name, replicas, ...):
Metadatg,,opg’[Namenode /home/foo/data, 3, ...

Block ops

Read Datanodes Datanodes

! I |
=& % = Replication = = L]

L] Bloc

Big blocks

Let’s say we want to achieve |% seek
overhead

Seek time ~10ms, transfer rate ~100 Mb/s

So block size must be ~100Mb

NameNode

NameNode

Manages the FS namespace
Keeps in Memory all files and blocks

Executes FS operations like opening,
closing, and renaming

Makes all decisions regarding replication of
blocks

SPOF

NameNode

® NS stored in 2 files: namespace image, edit
log

® Determines the mapping of blocks to
DataNodes

® Receives a Heartbeat and a Blockreport
from each of the DataNodes

NameNode

NameNode

Store persistent state to several file system
Secondary MasterNode

HDFS High-Availability

HDFS Federation

Primary Namenode

1. Roll edits

[\
edits.new

fsimage.ckpt

5.Roll
fsimage.ckpt
and edits.new

N\
fsimage

Secondary Namenode

2. Retrieve fsimage and edits from primary

\
fsimage.ckpt

4. Transfer checkpoint to primary

DataNode

DataNode

Usually | DataNode | machine

Serves read and write client requests

Performs block creation, deletion, and
replication

DataNode

Each block represented as 2 files: data,
metadata

Metadata contains checksums, generation
stamp

Handshake while starting the cluster to
verify ID of namespace and SWV version

DataNode

NameNode never calls DataNodes
Replicate block

Remove local replica
Re-register/shut down

Send an immediate block report

Data Flow

Distance

HDFS is rack aware

Network is presented as tree

d(nl,n2) =d(nl,A) + d (n2,A),A -- closest
common ancestor

I
i

I
LRI

~
1l
-

data center

D
@
-
S
=
A
A

Read

® (et list of blocks locations from
NameNode

® |terate over blocks and read

® Verifies checksums

Read

® On fail or when unable to connect DN:
® try another replica
® remember that

® tell NameNode

Read

1: open

client JYM

6 close ™

Distributed
FileSystem

dient _..3: read

FSData
InputStream

client node

2:get block locations

N NameNode

namenode

DataNode

datanode

DataNode DataNode

datanode datanode

Read

final Configuration conf = new Configuration();
final FileSystem fs = FileSystem.get(conf);
InputStream in = null;
try {
in = fs.open(new Path("/user/test-hdfs/somefile"));
//do whatever with inpustream
} finally {

I0OUtils.closeStream(in);

Write

Ask NameNode to create file
NameNode performs some checks
Client ask for list of DataNodes

Forms a pipeline and ack queue

Write

® Send packets to the pipeline
® |n case of failure
close pipeline
remove bad DN, tell NN
retry sending to good DNs

block will be replicated asynchronously

Write

Distributed 1+
FileSystem 1
FSData
OutputStream

-

§
:

4; write packet 5: ack packet

Pipeline of DataNode
datanodes

NameNode

DataNode

Write

final Configuration conf = new Configuration();
final FileSystem fs = FileSystem.get(conf);
FSDataOutputStream out = null;
try {
out = fs.create(new Path("/user/test-hdfs/newfile"));
//write to out
} finally {

I0OUtils.closeStream(in);

Block Placement

® Reliability/Bandwidth trade off

® By default: same node, 2 random nodes
from another rack, other random nodes

No Datanode contains more than one
replica of any block

No rack contains more than two
replicas of the same block

Tools

45

Balancer

Compare utilization of node with
utilization of cluster

Guarantees that the decision does not
reduce either the number of replicas or the
number of racks

Minimizes the inter-rack data copying

Block scanner

Periodically scans replica, verifies
checksums

Notifies NameNode if checksum fails

Replicate first, then delete

Performance

Performance

Cluster ~3500 nodes

Total bandwidth is linear to number of
nodes

DFSIO Read: 66 MB /s per node
DFSIO Write: 40 MB /s per node

Performance

Open file for read: 126100
Create file: 5600

Rename file: 8300

Delete file: 20700

DataNode heartbeat: 300000
Block reports (block/s): 639700

Sources

The Hadoop Distributed File System (K.
Shvacko)

HDFS Architecture Guide
Hadoop: The Definitive Guide (O’Reilly)

HDFS

NeoHuna Haavapxu
leonid.nalchadzhi@gmail.com

unekc

mailto:leonid.nalchadzhi@gmail.com
mailto:leonid.nalchadzhi@gmail.com

